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Motivation

• Generating waveforms can be expensive, time-consuming, and a bottleneck for 

practical data analysis applications

– Template bank generation for gravitational wave searches (“curse of dimensionality”)

– Multiple waveform queries for parameter estimation (e.g., with stochastic methods)

– Parameter space mapping, exploration, and discovery (i.e., science!)

– Accessibility to broader scientific communities and the public
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• Goals:  To cheaply and quickly predict gravitational waveforms that are otherwise 

prohibitively expensive to mass-produce.

– Numerical relativity waveforms of compact binary coalescences

• Can take weeks to months to complete one simulation and corresponding waveform

• 3 points only in each of the 7 parameter dimensions requires 2187 simulations!

– Extreme Mass Ratio Inspirals (EMRIs)

– Continuous gravitational waves
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Reduced-Order Modeling (ROM)
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Overview

Reduced Basis

Empirical 

Interpolation

Surrogate

Rapid waveform generation

Reduced-Order 

Quadratures

Rapid integral evaluation

Dual compression in time/frequency

Compression in parameter space

Offline

Online
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Reduced Basis
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Basic Idea

Output:
1) “Most relevant” parameters and waveforms

2) A nested/hierarchical basis

3) Maximum projection errors 

converge exponentially
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Reduced Basis

• Arrange and transform the training data into a 

form that is smooth with parameter variations 

(i.e., “boring”) [Blackman et al (2014)]

– A 0PN waveform has a reduced basis with one element

when parameterizing by phase instead of frequency
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Lessons learned

• The greedy algorithm is highly flexible and 

can adapt to many different types of strategies
– Randomly resample the training set after each iteration [Blackman et al (2014)]

– Use an error metric that is suitable to the problem and parameterization

– Divide and conquer the training space (with random resampling) [Galley (unpublished)]

• Lower-accuracy waveform models (e.g., Phenom*, *EOB*) are helpful to inform for 

which parameters to run expensive simulations [Blackman et al (2015)]

– Side-effect price to pay:  More parameters tend to be selected than are actually needed in the end.

(EOBNRHMv2 implied 22 simulations where the actual number is about 7.)

Blackman et al (2014)

• Waveform representation by a reduced basis is robust to different detector PSDs
[Field et al (2011)]

• Even if target ROM accuracy is small, it is typically useful to build the Reduced Basis 

with a much higher accuracy.
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Basic Idea

Empirical Interpolation

• Empirical interpolation errors are provably proportional to the maximum projection errors of the 

reduced basis.

– In ROMs to date, empirical interpolation is within ~100x of the reduced basis representation error.
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• Empirical interpolation is essentially the standard interpolation problem but constructed using the 

application-specific reduced basis instead of a generic basis (e.g., Chebyshev polynomials)

– Interpolation nodes are selected by another greedy algorithm that minimizes the interpolation error

• A reduced basis is built to accurately span the waveform space

– Therefore, all functions and functionals of waveforms can be accurately represented by the reduced basis

– Including an interpolant built from the empirically found reduced basis

Barrault et al (2004)

Maday et al (2009)
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Surrogate

• A “grid” of points in parameter space and physical (i.e., time/frequency) space is built for the 

features of the specific waveform family by RB and EIM
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Basic Idea

• Surrogate is constructed by fitting for the parameter variation at each empirical interpolation node 

(e.g., time)

– (show equation), (highlight speed-up relative to nominal waveform generation times)
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• (Brief overview of what it is)

• (Parameter estimation applications, even for NR waveforms via its surrogate)

• (Mention small start-up cost before online stage)
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Basic Idea

Reduced-Order Quadratures
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• Post-Newtonian inspirals
– (non-spinning reduced basis)

– (non-precessing reduced basis)

– (quasi-normal mode ringdowns reduced basis)
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• Numerical Relativity surrogates
– (non-spinning BBH)

– (non-precessing BBH)

– (precessing BBH)

Results

• EMRI surrogates
– (black hole Green’s function surrogate for scalar self-force)

• Continuous gravitational waves
– (that recent paper by the Scottish folks – reduced basis for timing models)

• Reduced-Order Quadratures
– (look-up Priscilla’s papers to remind myself what they did exactly)

• Effective One-Body surrogates
– (EOBNRv2 and EOBNRHMv2)

– (SEOBv?)

– (TEOB)

Blackman, et al (2015)
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• ROMs are accurate within the parameter domain of the training space

– Caution must be taken when extrapolating outside the training space

– Mitigations:

• Increase the domain of the training space

• Find a smoother waveform parameterization so that extrapolation is less severe
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• Offline generation of the training set can take a long time

– Example:  Took 2 years to generate 22 NR training waveforms for the non-spinning BBH surrogate

– Mitigations:  

• Progress with time: Took ~2 years to generate (a few hundred) NR training waveforms for the 

precessing BBH surrogate

• Adjust the training space sampling strategy for the Reduced Basis greedy algorithm

Short-comings and mitigations

• Reduced-Order Quadratures rely on the linearity of the waveform itself

– Smart (i.e., nonlinear) parameterizations for RB construction are not helpful here

– Mitigations:

• None

• But, one can still use a surrogate (if needed) for rapid waveform generation in the integrand

• ROM works best on a training set of Cinfinity functions

– Can still work on Cn functions but yields a less compact reduced basis (e.g., EOBNRv2)

– Mitigation: 

• (fill this out in a clear way)
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Outlook

• (outlook)

• (rompy code public repo)
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